::: container
RAG System Architecture for TSQL.APP
::: diagram-container
:::
::: section
System Components
- Document Processing Pipeline
- Document ingestion
- Text extraction and chunking
- Embedding generation
- Vector database storage
- Query Processing Pipeline
- Query embedding generation
- Vector similarity search
- Document retrieval
- Context assembly
- Generation with Claude 3.7
- Prompt construction with retrieved context
- API call to Claude 3.7
- Response processing and formatting
- Integration Layer
- TSQL.APP stored procedures and functions
- User interface components
- Authentication and request handling :::
::: section
Data Flow
1. Document Ingestion
Raw Documents → Text Extraction → Chunking → Embedding → Vector DB
2. Query Processing
User Query → Query Embedding → Similarity Search → Retrieve Top K Chunks
3. Response Generation
Retrieved Chunks + Query → Prompt Construction → Claude 3.7 API → Response
4. User Interface
TSQL.APP Card → RAG Endpoint SP → Response Display
:::
::: implementation
Implementation Notes
- The system will use a table-based vector store for simplicity
- The OpenAI API will be used for generating embeddings (ada-002)
- Claude 3.7 will be accessed via Anthropic API for generation
- All components will be implemented as TSQL.APP stored procedures ::: :::